Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Equidistribution in Shrinking Sets and L^4-Norm Bounds for Automorphic Forms (1705.05488v2)

Published 16 May 2017 in math.NT

Abstract: We study two closely related problems stemming from the random wave conjecture for Maass forms. The first problem is bounding the $L4$-norm of a Maass form in the large eigenvalue limit; we complete the work of Spinu to show that the $L4$-norm of an Eisenstein series $E(z,1/2+it_g)$ restricted to compact sets is bounded by $\sqrt{\log t_g}$. The second problem is quantum unique ergodicity in shrinking sets; we show that by averaging over the centre of hyperbolic balls in $\Gamma \backslash \mathbb{H}$, quantum unique ergodicity holds for almost every shrinking ball whose radius is larger than the Planck scale. This result is conditional on the generalised Lindelof hypothesis for Maass eigenforms but is unconditional for Eisenstein series. We also show that equidistribution for Maass eigenforms need not hold at or below the Planck scale. Finally, we prove similar equidistribution results in shrinking sets for Heegner points and closed geodesics associated to ideal classes of quadratic fields.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.