Pathological center foliation with dimension greater than one (1705.05422v1)
Abstract: In this paper we are considering partially hyperbolic diffeomorphims of the torus, with $dim(Ec) > 1.$ We prove, under some conditions, that if the all center Lyapunov exponents of the linearization $A,$ of a \mbox{DA-diffeomorphism} $f,$ are positive and the center foliation of $f$ is absolutely continuous, then the sum of the center Lyapunov exponents of $f$ is bounded by the sum of the center Lyapunov exponents of $A.$ After, we construct a $C1-$open class of volume preserving \mbox{DA-diffeomorphisms}, far from Anosov diffeomorphisms, with non compact pathological two dimensional center foliation. Indeed, each $f$ in this open set satisfies the previously established hypothesis, but the sum of the center Lyapunov exponents of $f$ is greater than the corresponding sum with respect to its linearization. It allows to conclude that the center foliation of $f$ is non absolutely continuous. We still build an example of a DA-diffeomorphism, such that the disintegration of volume along the two dimensional, non compact center foliation is neither Lebesgue nor atomic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.