Papers
Topics
Authors
Recent
2000 character limit reached

Unimodal probability distributions for deep ordinal classification

Published 15 May 2017 in stat.ML | (1705.05278v2)

Abstract: Probability distributions produced by the cross-entropy loss for ordinal classification problems can possess undesired properties. We propose a straightforward technique to constrain discrete ordinal probability distributions to be unimodal via the use of the Poisson and binomial probability distributions. We evaluate this approach in the context of deep learning on two large ordinal image datasets, obtaining promising results.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.