Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EffiTest: Efficient Delay Test and Statistical Prediction for Configuring Post-silicon Tunable Buffers (1705.04992v1)

Published 14 May 2017 in cs.AR

Abstract: At nanometer manufacturing technology nodes, process variations significantly affect circuit performance. To combat them, post- silicon clock tuning buffers can be deployed to balance timing bud- gets of critical paths for each individual chip after manufacturing. The challenge of this method is that path delays should be mea- sured for each chip to configure the tuning buffers properly. Current methods for this delay measurement rely on path-wise frequency stepping. This strategy, however, requires too much time from ex- pensive testers. In this paper, we propose an efficient delay test framework (EffiTest) to solve the post-silicon testing problem by aligning path delays using the already-existing tuning buffers in the circuit. In addition, we only test representative paths and the delays of other paths are estimated by statistical delay prediction. Exper- imental results demonstrate that the proposed method can reduce the number of frequency stepping iterations by more than 94% with only a slight yield loss.

Citations (21)

Summary

We haven't generated a summary for this paper yet.