Papers
Topics
Authors
Recent
Search
2000 character limit reached

The middle-scale asymptotics of Wishart matrices

Published 9 May 2017 in math.PR, math.ST, and stat.TH | (1705.03510v1)

Abstract: We study the behavior of a real $p$-dimensional Wishart random matrix with $n$ degrees of freedom when $n,p\rightarrow\infty$ but $p/n\rightarrow 0$. We establish the existence of phase transitions when $p$ grows at the order $n{(K+1)/(K+3)}$ for every $k\in\mathbb{N}$, and derive expressions for approximating densities between every two phase transitions. To do this, we make use of a novel tool we call the G-transform of a distribution, which is closely related to the characteristic function. We also derive an extension of the $t$-distribution to the real symmetric matrices, which naturally appears as the conjugate distribution to the Wishart under a G-transformation, and show its empirical spectral distribution obeys a semicircle law when $p/n\rightarrow 0$. Finally, we discuss how the phase transitions of the Wishart distribution might originate from changes in rates of convergence of symmetric $t$ statistics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.