Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Rising Follower Counts on Twitter Using Profile Information (1705.03214v1)

Published 9 May 2017 in cs.IR and cs.SI

Abstract: When evaluating the cause of one's popularity on Twitter, one thing is considered to be the main driver: Many tweets. There is debate about the kind of tweet one should publish, but little beyond tweets. Of particular interest is the information provided by each Twitter user's profile page. One of the features are the given names on those profiles. Studies on psychology and economics identified correlations of the first name to, e.g., one's school marks or chances of getting a job interview in the US. Therefore, we are interested in the influence of those profile information on the follower count. We addressed this question by analyzing the profiles of about 6 Million Twitter users. All profiles are separated into three groups: Users that have a first name, English words, or neither of both in their name field. The assumption is that names and words influence the discoverability of a user and subsequently his/her follower count. We propose a classifier that labels users who will increase their follower count within a month by applying different models based on the user's group. The classifiers are evaluated with the area under the receiver operator curve score and achieves a score above 0.800.

Citations (12)

Summary

We haven't generated a summary for this paper yet.