Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attacking Machine Learning models as part of a cyber kill chain (1705.00564v2)

Published 1 May 2017 in cs.CR

Abstract: Machine learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking emerge. Compromising machine learning model is a desirable goal. In fact, spammers have been quite successful getting through machine learning enabled spam filters for years. While previous works have been done on adversarial machine learning, none has been considered within a defense-in-depth environment, in which correct classification alone may not be good enough. For the first time, this paper proposes a cyber kill-chain for attacking machine learning models together with a proof of concept. The intention is to provide a high level attack model that inspire more secure processes in research/design/implementation of machine learning based security solutions.

Citations (9)

Summary

We haven't generated a summary for this paper yet.