Papers
Topics
Authors
Recent
Search
2000 character limit reached

Attacking Machine Learning models as part of a cyber kill chain

Published 1 May 2017 in cs.CR | (1705.00564v2)

Abstract: Machine learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking emerge. Compromising machine learning model is a desirable goal. In fact, spammers have been quite successful getting through machine learning enabled spam filters for years. While previous works have been done on adversarial machine learning, none has been considered within a defense-in-depth environment, in which correct classification alone may not be good enough. For the first time, this paper proposes a cyber kill-chain for attacking machine learning models together with a proof of concept. The intention is to provide a high level attack model that inspire more secure processes in research/design/implementation of machine learning based security solutions.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.