Papers
Topics
Authors
Recent
Search
2000 character limit reached

Single image depth estimation by dilated deep residual convolutional neural network and soft-weight-sum inference

Published 27 Apr 2017 in cs.CV and cs.LG | (1705.00534v1)

Abstract: This paper proposes a new residual convolutional neural network (CNN) architecture for single image depth estimation. Compared with existing deep CNN based methods, our method achieves much better results with fewer training examples and model parameters. The advantages of our method come from the usage of dilated convolution, skip connection architecture and soft-weight-sum inference. Experimental evaluation on the NYU Depth V2 dataset shows that our method outperforms other state-of-the-art methods by a margin.

Citations (35)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.