Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Conserved quantities of Q-systems from dimer integrable systems (1704.08736v2)

Published 27 Apr 2017 in math.CO and math.DS

Abstract: We study a discrete dynamic on weighted bipartite graphs on a torus, analogous to dimer integrable systems in Goncharov-Kenyon 2013. The dynamic on the graph is an urban renewal together with shrinking all 2-valent vertices, while it is a cluster transformation on the weight. The graph is not necessary obtained from an integral polygon. We show that all Hamiltonians, partition functions of all weighted perfect matchings with a common homology class, are invariant under a move on the weighted graph. This move coincides with a cluster mutation, analog to Y-seed mutation in dimer integrable systems. We construct graphs for Q-systems of type A and B and show that the Hamiltonians are conserved quantities of the systems. The conserved quantities can be written as partition functions of hard particles on a certain graph. For type A, they Poisson commute under a nondegenerate Poisson bracket.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.