Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The infinitesimal moduli space of heterotic $G_2$ systems (1704.08717v3)

Published 27 Apr 2017 in hep-th and math.DG

Abstract: Heterotic string compactifications on integrable $G_2$ structure manifolds $Y$ with instanton bundles $(V,A), (TY,\tilde{\theta})$ yield supersymmetric three-dimensional vacua that are of interest in physics. In this paper, we define a covariant exterior derivative $\cal D$ and show that it is equivalent to a heterotic $G_2$ system encoding the geometry of the heterotic string compactifications. This operator $\cal D$ acts on a bundle ${\cal Q}=T*Y\oplus{\rm End}(V)\oplus{\rm End}(TY)$ and satisfies a nilpotency condition $\check{\cal D}2=0$, for an appropriate projection of $\cal D$. Furthermore, we determine the infinitesimal moduli space of these systems and show that it corresponds to the finite-dimensional cohomology group $\check H1_{\check{\cal D}}(\cal Q)$. We comment on the similarities and differences of our result with Atiyah's well-known analysis of deformations of holomorphic vector bundles over complex manifolds. Our analysis leads to results that are of relevance to all orders in the $\alpha'$ expansion.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.