Continuously Differentiable Exponential Linear Units (1704.07483v1)
Abstract: Exponential Linear Units (ELUs) are a useful rectifier for constructing deep learning architectures, as they may speed up and otherwise improve learning by virtue of not have vanishing gradients and by having mean activations near zero. However, the ELU activation as parametrized in [1] is not continuously differentiable with respect to its input when the shape parameter alpha is not equal to 1. We present an alternative parametrization which is C1 continuous for all values of alpha, making the rectifier easier to reason about and making alpha easier to tune. This alternative parametrization has several other useful properties that the original parametrization of ELU does not: 1) its derivative with respect to x is bounded, 2) it contains both the linear transfer function and ReLU as special cases, and 3) it is scale-similar with respect to alpha.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.