Papers
Topics
Authors
Recent
2000 character limit reached

Continuously Differentiable Exponential Linear Units (1704.07483v1)

Published 24 Apr 2017 in cs.LG

Abstract: Exponential Linear Units (ELUs) are a useful rectifier for constructing deep learning architectures, as they may speed up and otherwise improve learning by virtue of not have vanishing gradients and by having mean activations near zero. However, the ELU activation as parametrized in [1] is not continuously differentiable with respect to its input when the shape parameter alpha is not equal to 1. We present an alternative parametrization which is C1 continuous for all values of alpha, making the rectifier easier to reason about and making alpha easier to tune. This alternative parametrization has several other useful properties that the original parametrization of ELU does not: 1) its derivative with respect to x is bounded, 2) it contains both the linear transfer function and ReLU as special cases, and 3) it is scale-similar with respect to alpha.

Citations (131)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.