Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Large-sample approximations for variance-covariance matrices of high-dimensional time series (1704.06230v1)

Published 20 Apr 2017 in math.PR, math.ST, stat.ME, and stat.TH

Abstract: Distributional approximations of (bi--) linear functions of sample variance-covariance matrices play a critical role to analyze vector time series, as they are needed for various purposes, especially to draw inference on the dependence structure in terms of second moments and to analyze projections onto lower dimensional spaces as those generated by principal components. This particularly applies to the high-dimensional case, where the dimension $d$ is allowed to grow with the sample size $n$ and may even be larger than $n$. We establish large-sample approximations for such bilinear forms related to the sample variance-covariance matrix of a high-dimensional vector time series in terms of strong approximations by Brownian motions. The results cover weakly dependent as well as many long-range dependent linear processes and are valid for uniformly $ \ell_1 $-bounded projection vectors, which arise, either naturally or by construction, in many statistical problems extensively studied for high-dimensional series. Among those problems are sparse financial portfolio selection, sparse principal components, the LASSO, shrinkage estimation and change-point analysis for high--dimensional time series, which matter for the analysis of big data and are discussed in greater detail.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube