Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A note on MCMC for nested multilevel regression models via belief propagation (1704.06064v2)

Published 20 Apr 2017 in stat.CO

Abstract: In the quest for scalable Bayesian computational algorithms we need to exploit the full potential of existing methodologies. In this note we point out that message passing algorithms, which are very well developed for inference in graphical models, appear to be largely unexplored for scalable inference in Bayesian multilevel regression models. We show that nested multilevel regression models with Gaussian errors lend themselves very naturally to the combined use of belief propagation and MCMC. Specifically, the posterior distribution of the regression parameters conditionally on covariance hyperparameters is a high-dimensional Gaussian that can be sampled exactly (as well as marginalized) using belief propagation at a cost that scales linearly in the number of parameters and data. We derive an algorithm that works efficiently even for conditionally singular Gaussian distributions, e.g., when there are linear constraints between the parameters at different levels. We show that allowing for such non-invertible Gaussians is critical for belief propagation to be applicable to a large class of nested multilevel models. From a different perspective, the methodology proposed can be seen as a generalization of forward-backward algorithms for sampling to multilevel regressions with tree-structure graphical models, as opposed to single-branch trees used in classical Kalman filter contexts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube