Papers
Topics
Authors
Recent
Search
2000 character limit reached

Caching Policy Optimization for D2D Communications by Learning User Preference

Published 17 Apr 2017 in cs.IT and math.IT | (1704.04860v1)

Abstract: Cache-enabled device-to-device (D2D) communications can boost network throughput. By pre-downloading contents to local caches of users, the content requested by a user can be transmitted via D2D links by other users in proximity. Prior works optimize the caching policy at users with the knowledge of content popularity, defined as the probability distribution of request for every file in a library from by all users. However, content popularity can not reflect the interest of each individual user and thus popularity-based caching policy may not fully capture the performance gain introduced by caching. In this paper, we optimize caching policy for cache-enabled D2D by learning user preference, defined as the conditional probability distribution of a user's request for a file given that the user sends a request. We first formulate an optimization problem with given user preference to maximize the offloading probability, which is proved as NP-hard, and then provide a greedy algorithm to find the solution. In order to predict the preference of each individual user, we model the user request behavior by probabilistic latent semantic analysis (pLSA), and then apply expectation maximization (EM) algorithm to estimate the model parameters. Simulation results show that the user preference can be learnt quickly. Compared to the popularity-based caching policy, the offloading gain achieved by the proposed policy can be remarkably improved even with predicted user preference.

Citations (44)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.