Papers
Topics
Authors
Recent
2000 character limit reached

On spectral synthesis in varieties containing the solutions of inhomogeneous linear functional equations (1704.04755v1)

Published 16 Apr 2017 in math.CV

Abstract: As a continuation of our previous work \cite{KV2} the aim of the paper is to investigate the solutions of special inhomogeneous linear functional equations by using spectral synthesis in translation invariant closed linear subspaces of additive/multiadditive functions containing the restrictions of the solutions to finitely generated fields. The idea is based on the fundamental work of M. Laczkovich and G. Kiss \cite{KL}. Using spectral analysis in some related varieties we can prove the existence of special solutions (automorphisms) of the functional equation but the spectral synthesis allows us to describe the entire space of solutions on a large class of finitely generated fields. It is spanned by the so-called exponential monomials which can be given in terms of automorphisms of $\cc$ and differential operators. We apply the general theory to some inhomogeneous problems motivated by quadrature rules of approximate integration \cite{KKSZ08}, see also \cite{KKSZ} and \cite{KKSZW}.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.