Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Uniform Priors in Bayesian Network Structure Learning (1704.03942v1)

Published 12 Apr 2017 in stat.ML and stat.ME

Abstract: Bayesian network structure learning is often performed in a Bayesian setting, evaluating candidate structures using their posterior probabilities for a given data set. Score-based algorithms then use those posterior probabilities as an objective function and return the maximum a posteriori network as the learned model. For discrete Bayesian networks, the canonical choice for a posterior score is the Bayesian Dirichlet equivalent uniform (BDeu) marginal likelihood with a uniform (U) graph prior, which assumes a uniform prior both on the network structures and on the parameters of the networks. In this paper, we investigate the problems arising from these assumptions, focusing on those caused by small sample sizes and sparse data. We then propose an alternative posterior score: the Bayesian Dirichlet sparse (BDs) marginal likelihood with a marginal uniform (MU) graph prior. Like U+BDeu, MU+BDs does not require any prior information on the probabilistic structure of the data and can be used as a replacement noninformative score. We study its theoretical properties and we evaluate its performance in an extensive simulation study, showing that MU+BDs is both more accurate than U+BDeu in learning the structure of the network and competitive in predicting power, while not being computationally more complex to estimate.

Citations (4)

Summary

We haven't generated a summary for this paper yet.