Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Theoretical Analysis of the BDeu Scores in Bayesian Network Structure Learning (1607.04427v3)

Published 15 Jul 2016 in cs.LG, cs.IT, and math.IT

Abstract: In Bayesian network structure learning (BNSL), we need the prior probability over structures and parameters. If the former is the uniform distribution, the latter determines the correctness of BNSL. In this paper, we compare BDeu (Bayesian Dirichlet equivalent uniform) and Jeffreys' prior w.r.t. their consistency. When we seek a parent set $U$ of a variable $X$, we require regularity that if $H(X|U)\leq H(X|U')$ and $U\subsetneq U'$, then $U$ should be chosen rather than $U'$. We prove that the BDeu scores violate the property and cause fatal situations in BNSL. This is because for the BDeu scores, for any sample size $n$,there exists a probability in the form $P(X,Y,Z)={P(XZ)P(YZ)}/{P(Z)}$ such that the probability of deciding that $X$ and $Y$ are not conditionally independent given $Z$ is more than a half. For Jeffreys' prior, the false-positive probability uniformly converges to zero without depending on any parameter values, and no such an inconvenience occurs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Joe Suzuki (23 papers)
Citations (35)

Summary

We haven't generated a summary for this paper yet.