Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical-Bayes Score for Discrete Bayesian Networks (1605.03884v3)

Published 12 May 2016 in stat.ML and stat.ME

Abstract: Bayesian network structure learning is often performed in a Bayesian setting, by evaluating candidate structures using their posterior probabilities for a given data set. Score-based algorithms then use those posterior probabilities as an objective function and return the maximum a posteriori network as the learned model. For discrete Bayesian networks, the canonical choice for a posterior score is the Bayesian Dirichlet equivalent uniform (BDeu) marginal likelihood with a uniform (U) graph prior (Heckerman et al., 1995). Its favourable theoretical properties descend from assuming a uniform prior both on the space of the network structures and on the space of the parameters of the network. In this paper, we revisit the limitations of these assumptions; and we introduce an alternative set of assumptions and the resulting score: the Bayesian Dirichlet sparse (BDs) empirical Bayes marginal likelihood with a marginal uniform (MU) graph prior. We evaluate its performance in an extensive simulation study, showing that MU+BDs is more accurate than U+BDeu both in learning the structure of the network and in predicting new observations, while not being computationally more complex to estimate.

Citations (49)

Summary

We haven't generated a summary for this paper yet.