Papers
Topics
Authors
Recent
2000 character limit reached

Calabi-Yau Volumes and Reflexive Polytopes

Published 11 Apr 2017 in hep-th and math.AG | (1704.03462v1)

Abstract: We study various geometrical quantities for Calabi-Yau varieties realized as cones over Gorenstein Fano varieties, obtained as toric varieties from reflexive polytopes in various dimensions. Focus is made on reflexive polytopes up to dimension 4 and the minimized volumes of the Sasaki-Einstein base of the corresponding Calabi-Yau cone are calculated. By doing so, we conjecture new bounds for the Sasaki-Einstein volume with respect to various topological quantities of the corresponding toric varieties. We give interpretations about these volume bounds in the context of associated field theories via the AdS/CFT correspondence.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.