Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Memetic Algorithm for the Minimum Conductance Graph Partitioning Problem (1704.02854v1)

Published 10 Apr 2017 in cs.SI

Abstract: The minimum conductance problem is an NP-hard graph partitioning problem. Apart from the search for bottlenecks in complex networks, the problem is very closely related to the popular area of network community detection. In this paper, we tackle the minimum conductance problem as a pseudo-Boolean optimisation problem and propose a memetic algorithm to solve it. An efficient local search strategy is established. Our memetic algorithm starts by using this local search strategy with different random strings to sample a set of diverse initial solutions. This is followed by an evolutionary phase based on a steady-state framework and two intensification subroutines. We compare the algorithm to a wide range of multi-start local search approaches and classical genetic algorithms with different crossover operators. The experimental results are presented for a diverse set of real-world networks. These results indicate that the memetic algorithm outperforms the alternative stochastic approaches.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.