2000 character limit reached
A Linearly Relaxed Approximate Linear Program for Markov Decision Processes
Published 9 Apr 2017 in cs.SY | (1704.02544v1)
Abstract: Approximate linear programming (ALP) and its variants have been widely applied to Markov Decision Processes (MDPs) with a large number of states. A serious limitation of ALP is that it has an intractable number of constraints, as a result of which constraint approximations are of interest. In this paper, we define a linearly relaxed approximation linear program (LRALP) that has a tractable number of constraints, obtained as positive linear combinations of the original constraints of the ALP. The main contribution is a novel performance bound for LRALP.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.