Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Linearly Relaxed Approximate Linear Program for Markov Decision Processes (1704.02544v1)

Published 9 Apr 2017 in cs.SY

Abstract: Approximate linear programming (ALP) and its variants have been widely applied to Markov Decision Processes (MDPs) with a large number of states. A serious limitation of ALP is that it has an intractable number of constraints, as a result of which constraint approximations are of interest. In this paper, we define a linearly relaxed approximation linear program (LRALP) that has a tractable number of constraints, obtained as positive linear combinations of the original constraints of the ALP. The main contribution is a novel performance bound for LRALP.

Citations (25)

Summary

We haven't generated a summary for this paper yet.