On $C^1$, $C^2$, and weak type-$(1,1)$ estimates for linear elliptic operators: Part II (1704.01520v2)
Abstract: We extend and improve the results in \cite{DK16}: showing that weak solutions to full elliptic equations in divergence form with zero Dirichlet boundary conditions are continuously differentiable up to the boundary when the leading coefficients have Dini mean oscillation and the lower order coefficients verify certain conditions. Similar results are obtained for non-divergence form equations. We extend the weak type-(1, 1) estimates in \cite{DK16} and \cite{Es94} up to the boundary and derive a Harnack inequality for non-negative adjoint solutions to non-divergence form elliptic equations, when the leading coefficients have Dini mean oscillation.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.