2000 character limit reached
Cluster Partition Function and Invariants of 3-manifolds (1704.00933v2)
Published 4 Apr 2017 in hep-th, math-ph, and math.MP
Abstract: We review some recent developments in Chern-Simons theory on a hyperbolic 3-manifold $M$ with complex gauge group $G$. We focus on the case $G=SL(N,\mathbb{C})$ and with $M$ a knot complement. The main result presented in this note is the cluster partition function, a computational tool that uses cluster algebra techniques to evaluate the Chern-Simons path integral. We also review various applications and open questions regarding the cluster partition function and some of its relation with string theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.