Split $t$-structures and torsion pairs in hereditary categories (1704.00858v1)
Abstract: We give necessary and sufficient conditions for torsion pairs in a hereditary category to be in bijection with $t$-structures in the bounded derived category of that hereditary category. We prove that the existence of a split $t$-structure with nontrivial heart in a semiconnected Krull-Schmidt category implies that this category is equivalent to the derived category of a hereditary category. We construct a bijection between split torsion pairs in the module category of a tilted algebra having a complete slice in the preinjective component with corresponding $t$-structures. Finally, we classify split $t$-structures in the derived category of a hereditary algebra.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.