Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On ternary positive-definite quadratic forms with the same representations over Z (1703.08854v11)

Published 26 Mar 2017 in math.NT

Abstract: Kaplansky conjectured that if two positive-definite real ternary quadratic forms have perfectly identical representations over $\mathbb{Z}$, they are constant multiples of regular forms, or is included in either of two families parametrized by $\mathbb{R}2$ (so called, hexagonal and rhombohedral families). Our results aim to clarify the limitations imposed to such a pair by computational and theoretical approaches. Firstly, the result of an exhaustive search for such pairs of integral quadratic forms is presented, in order to provide a concrete version of the Kaplansky conjecture. The obtained list contains a small number of non-regular forms that are confirmed to have the identical representations up to 3,000,000, although a strong limitation on the existence of such pairs is still observed, regardless of whether the coefficient field is $\mathbb{Q}$ or $\mathbb{R}$. Secondly, we prove that if two pairs of ternary quadratic forms have the identical simultaneous representations over $\mathbb{Q}$, their constant multiples are equivalent over $\mathbb{Q}$. This was motivated by the question why the other families were not detected in the search. In the proof, the parametrization of quartic rings and their resolvent rings by Bhargava is used to discuss pairs of ternary quadratic forms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.