Collapsibility to a subcomplex of a given dimension is NP-complete (1703.06983v3)
Abstract: In this paper we extend the works of Tancer and of Malgouyres and Franc\'es, showing that $(d,k)$-collapsibility is NP-complete for $d\geq k+2$ except $(2,0)$. By $(d,k)$-collapsibility we mean the following problem: determine whether a given $d$-dimensional simplicial complex can be collapsed to some $k$-dimensional subcomplex. The question of establishing the complexity status of $(d,k)$-collapsibility was asked by Tancer, who proved NP-completeness of $(d,0)$ and $(d,1)$-collapsibility (for $d\geq 3$). Our extended result, together with the known polynomial-time algorithms for $(2,0)$ and $d=k+1$, answers the question completely.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.