Homogeneous Solutions of Minimal Massive 3D Gravity (1703.06871v2)
Abstract: In this paper we systematically construct simply transitive homogeneous spacetime solutions of the three-dimensional Minimal Massive Gravity (MMG) model. In addition to those that have analogs in Topologically Massive Gravity, such as warped AdS and pp-waves, there are several solutions genuine to MMG. Among them, there is a stationary Lifshitz metric with the dynamical exponent z=-1 and an anisotropic Lifshitz solution where all coordinates scale differently. Moreover, we identify a homogeneous Kundt type solution at the chiral point of the theory. We also show that in a particular limit of the physical parameters in which the Cotton tensor drops out from the MMG field equation, homogeneous solutions exist only at the merger point in the parameter space if they are not conformally flat.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.