Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation (1703.04568v1)

Published 11 Mar 2017 in cs.SE

Abstract: Objective: This paper investigates the potential of ensemble learning for variants of adjustment methods used in analogy-based effort estimation. The number k of analogies to be used is also investigated. Method We perform a large scale comparison study where many ensembles constructed from n out of 40 possible valid variants of adjustment methods are applied to eight datasets. The performance of each method was evaluated based on standardized accuracy and effect size. Results: The results have been subjected to statistical significance testing, and show reasonable significant improvements on the predictive performance where ensemble methods are applied. Conclusion: Our conclusions suggest that ensembles of adjustment methods can work well and achieve good performance, even though they are not always superior to single methods. We also recommend constructing ensembles from only linear adjustment methods, as they have shown better performance and were frequently ranked higher.

Citations (91)

Summary

We haven't generated a summary for this paper yet.