Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Convolutional Neural Networks to Detect Clinical Dermoscopic Features (1703.04559v2)

Published 14 Mar 2017 in cs.CV

Abstract: The presence of certain clinical dermoscopic features within a skin lesion may indicate melanoma, and automatically detecting these features may lead to more quantitative and reproducible diagnoses. We reformulate the task of classifying clinical dermoscopic features within superpixels as a segmentation problem, and propose a fully convolutional neural network to detect clinical dermoscopic features from dermoscopy skin lesion images. Our neural network architecture uses interpolated feature maps from several intermediate network layers, and addresses imbalanced labels by minimizing a negative multi-label Dice-F$_1$ score, where the score is computed across the mini-batch for each label. Our approach ranked first place in the 2017 ISIC-ISBI Part 2: Dermoscopic Feature Classification Task challenge over both the provided validation and test datasets, achieving a 0.895% area under the receiver operator characteristic curve score. We show how simple baseline models can outrank state-of-the-art approaches when using the official metrics of the challenge, and propose to use a fuzzy Jaccard Index that ignores the empty set (i.e., masks devoid of positive pixels) when ranking models. Our results suggest that (i) the classification of clinical dermoscopic features can be effectively approached as a segmentation problem, and (ii) the current metrics used to rank models may not well capture the efficacy of the model. We plan to make our trained model and code publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jeremy Kawahara (6 papers)
  2. Ghassan Hamarneh (64 papers)
Citations (59)