Papers
Topics
Authors
Recent
Search
2000 character limit reached

Locality-sensitive hashing of curves

Published 11 Mar 2017 in cs.CG, cs.DS, and cs.IR | (1703.04040v1)

Abstract: We study data structures for storing a set of polygonal curves in ${\rm R}d$ such that, given a query curve, we can efficiently retrieve similar curves from the set, where similarity is measured using the discrete Fr\'echet distance or the dynamic time warping distance. To this end we devise the first locality-sensitive hashing schemes for these distance measures. A major challenge is posed by the fact that these distance measures internally optimize the alignment between the curves. We give solutions for different types of alignments including constrained and unconstrained versions. For unconstrained alignments, we improve over a result by Indyk from 2002 for short curves. Let $n$ be the number of input curves and let $m$ be the maximum complexity of a curve in the input. In the particular case where $m \leq \frac{\alpha}{4d} \log n$, for some fixed $\alpha>0$, our solutions imply an approximate near-neighbor data structure for the discrete Fr\'echet distance that uses space in $O(n{1+\alpha}\log n)$ and achieves query time in $O(n{\alpha}\log2 n)$ and constant approximation factor. Furthermore, our solutions provide a trade-off between approximation quality and computational performance: for any parameter $k \in [m]$, we can give a data structure that uses space in $O(2{2k}m{k-1} n \log n + nm)$, answers queries in $O( 2{2k} m{k}\log n)$ time and achieves approximation factor in $O(m/k)$.

Citations (62)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.