Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Geometric allocation approach to accelerating directed worm algorithm (1703.03136v4)

Published 9 Mar 2017 in cond-mat.stat-mech and hep-lat

Abstract: The worm algorithm is a versatile technique in the Markov chain Monte Carlo method for both classical and quantum systems. The algorithm substantially alleviates critical slowing down and reduces the dynamic critical exponents of various classical systems. It is crucial to improve the algorithm and push the boundary of the Monte Carlo method for physical systems. We here propose a directed worm algorithm that significantly improves computational efficiency. We use the geometric allocation approach to optimize the worm scattering process: worm backscattering is averted, and forward scattering is favored. Our approach successfully enhances the diffusivity of the worm head (kink), which is evident in the probability distribution of the relative position of the two kinks. Performance improvement is demonstrated for the Ising model at the critical temperature by measurement of exponential autocorrelation times and asymptotic variances. The present worm update is approximately 25 times as efficient as the conventional worm update for the simple cubic lattice model. Surprisingly, our algorithm is even more efficient than the Wolff cluster algorithm, which is one of the best update algorithms. We estimate the dynamic critical exponent of the simple cubic lattice Ising model to be $z \approx 0.27$ in the worm update. The worm and the Wolff algorithms produce different exponents of the integrated autocorrelation time of the magnetic susceptibility estimator but the same exponent of the asymptotic variance. We also discuss how to quantify the computational efficiency of the Markov chain Monte Carlo method. Our approach can be applied to a wide range of physical systems, such as the $| \phi |4$ model, the Potts model, the O($n$) loop model, and lattice QCD.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube