Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Extraction in Illicit Domains (1703.03097v1)

Published 9 Mar 2017 in cs.CL and cs.AI

Abstract: Extracting useful entities and attribute values from illicit domains such as human trafficking is a challenging problem with the potential for widespread social impact. Such domains employ atypical LLMs, have `long tails' and suffer from the problem of concept drift. In this paper, we propose a lightweight, feature-agnostic Information Extraction (IE) paradigm specifically designed for such domains. Our approach uses raw, unlabeled text from an initial corpus, and a few (12-120) seed annotations per domain-specific attribute, to learn robust IE models for unobserved pages and websites. Empirically, we demonstrate that our approach can outperform feature-centric Conditional Random Field baselines by over 18\% F-Measure on five annotated sets of real-world human trafficking datasets in both low-supervision and high-supervision settings. We also show that our approach is demonstrably robust to concept drift, and can be efficiently bootstrapped even in a serial computing environment.

Citations (35)

Summary

We haven't generated a summary for this paper yet.