Learning to Optimize Neural Nets (1703.00441v2)
Abstract: Learning to Optimize is a recently proposed framework for learning optimization algorithms using reinforcement learning. In this paper, we explore learning an optimization algorithm for training shallow neural nets. Such high-dimensional stochastic optimization problems present interesting challenges for existing reinforcement learning algorithms. We develop an extension that is suited to learning optimization algorithms in this setting and demonstrate that the learned optimization algorithm consistently outperforms other known optimization algorithms even on unseen tasks and is robust to changes in stochasticity of gradients and the neural net architecture. More specifically, we show that an optimization algorithm trained with the proposed method on the problem of training a neural net on MNIST generalizes to the problems of training neural nets on the Toronto Faces Dataset, CIFAR-10 and CIFAR-100.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.