Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

An improved Moser-Trudinger inequality involving the first non-zero Neumann eigenvalue with mean value zero in $\mathbf R^2$ (1702.08883v1)

Published 28 Feb 2017 in math.AP and math.FA

Abstract: Let $\Omega$ be a smooth bounded domain in $\mathbf R2$ and $\lambda{\mathsf N} (\Omega)$ the first non-zero Neumann eigenvalue of the operator $-\Delta$ on $\Omega$. In this paper, for any $\gamma \in [0, \lambda{\mathsf N} (\Omega) )$, we establish the following improved Moser-Trudinger inequality [ \sup_{u} \int_{\Omega} e{2\pi u2} dx < +\infty ] for arbitrary functions $u$ in $H1(\Omega)$ satisfying $\int_\Omega u dx =0$ and $|\nabla u|_22 -\alpha |u|_22 \leqslant 1$. Furthermore, this supremum is attained by some function $u*\in H1(\Omega)$. This strengthens the results of Chang and Yang (J. Differential Geom. 27 (1988) 259-296) and of Lu and Yang (Nonlinear Anal. 70 (2009) 2992-3001).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.