An improved Moser-Trudinger inequality involving the first non-zero Neumann eigenvalue with mean value zero in $\mathbf R^2$ (1702.08883v1)
Abstract: Let $\Omega$ be a smooth bounded domain in $\mathbf R2$ and $\lambda{\mathsf N} (\Omega)$ the first non-zero Neumann eigenvalue of the operator $-\Delta$ on $\Omega$. In this paper, for any $\gamma \in [0, \lambda{\mathsf N} (\Omega) )$, we establish the following improved Moser-Trudinger inequality [ \sup_{u} \int_{\Omega} e{2\pi u2} dx < +\infty ] for arbitrary functions $u$ in $H1(\Omega)$ satisfying $\int_\Omega u dx =0$ and $|\nabla u|_22 -\alpha |u|_22 \leqslant 1$. Furthermore, this supremum is attained by some function $u*\in H1(\Omega)$. This strengthens the results of Chang and Yang (J. Differential Geom. 27 (1988) 259-296) and of Lu and Yang (Nonlinear Anal. 70 (2009) 2992-3001).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.