Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Information Fusion for Multiple-View Sensor Data in Multi-Object Tracking (1702.08641v1)

Published 28 Feb 2017 in cs.SY

Abstract: This paper presents a novel statistical information fusion method to integrate multiple-view sensor data in multi-object tracking applications. The proposed method overcomes the drawbacks of the commonly used Generalized Covariance Intersection method, which considers constant weights allocated for sensors. Our method is based on enhancing the Generalized Covariance Intersection with adaptive weights that are automatically tuned based on the amount of information carried by the measurements from each sensor. To quantify information content, Cauchy-Schwarz divergence is used. Another distinguished characteristic of our method lies in the usage of the Labeled Multi-Bernoulli filter for multi-object tracking, in which the weight of each sensor can be separately adapted for each Bernoulli component of the filter. The results of numerical experiments show that our proposed method can successfully integrate information provided by multiple sensors with different fields of view. In such scenarios, our method significantly outperforms the state of art in terms of inclusion of all existing objects and tracking accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.