Vafa-Witten invariants for projective surfaces I: stable case (1702.08487v4)
Abstract: On a polarised surface, solutions of the Vafa-Witten equations correspond to certain polystable Higgs pairs. When stability and semistability coincide, the moduli space admits a symmetric obstruction theory and a $\mathbb C*$ action with compact fixed locus. Applying virtual localisation we define invariants constant under deformations. When the vanishing theorem of Vafa-Witten holds, the result is the (signed) Euler characteristic of the moduli space of instantons. In general there are other, rational, contributions. Calculations of these on surfaces with positive canonical bundle recover the first terms of modular forms predicted by Vafa and Witten.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.