Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scalable k-Means Clustering via Lightweight Coresets

Published 27 Feb 2017 in stat.ML, cs.DC, cs.DS, cs.LG, and stat.CO | (1702.08248v2)

Abstract: Coresets are compact representations of data sets such that models trained on a coreset are provably competitive with models trained on the full data set. As such, they have been successfully used to scale up clustering models to massive data sets. While existing approaches generally only allow for multiplicative approximation errors, we propose a novel notion of lightweight coresets that allows for both multiplicative and additive errors. We provide a single algorithm to construct lightweight coresets for k-means clustering as well as soft and hard Bregman clustering. The algorithm is substantially faster than existing constructions, embarrassingly parallel, and the resulting coresets are smaller. We further show that the proposed approach naturally generalizes to statistical k-means clustering and that, compared to existing results, it can be used to compute smaller summaries for empirical risk minimization. In extensive experiments, we demonstrate that the proposed algorithm outperforms existing data summarization strategies in practice.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.