Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Counting problems for geodesics on arithmetic hyperbolic surfaces (1702.08062v1)

Published 26 Feb 2017 in math.GT

Abstract: It is a longstanding problem to determine the precise relationship between the geodesic length spectrum of a hyperbolic manifold and its commensurability class. A well known result of Reid, for instance, shows that the geodesic length spectrum of an arithmetic hyperbolic surface determines the surface's commensurability class. It is known, however, that non-commensurable arithmetic hyperbolic surfaces may share arbitrarily large portions of their length spectra. In this paper we investigate this phenomenon and prove a number of quantitative results about the maximum cardinality of a family of pairwise non-commensurable arithmetic hyperbolic surfaces whose length spectra all contain a fixed (finite) set of nonnegative real numbers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)