Papers
Topics
Authors
Recent
2000 character limit reached

Counting problems for geodesics on arithmetic hyperbolic surfaces

Published 26 Feb 2017 in math.GT | (1702.08062v1)

Abstract: It is a longstanding problem to determine the precise relationship between the geodesic length spectrum of a hyperbolic manifold and its commensurability class. A well known result of Reid, for instance, shows that the geodesic length spectrum of an arithmetic hyperbolic surface determines the surface's commensurability class. It is known, however, that non-commensurable arithmetic hyperbolic surfaces may share arbitrarily large portions of their length spectra. In this paper we investigate this phenomenon and prove a number of quantitative results about the maximum cardinality of a family of pairwise non-commensurable arithmetic hyperbolic surfaces whose length spectra all contain a fixed (finite) set of nonnegative real numbers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.