Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Systoles of Arithmetic Hyperbolic Surfaces and 3-manifolds (1504.05257v4)

Published 20 Apr 2015 in math.GT, math.DG, and math.NT

Abstract: Our main result is that for all sufficiently large $x_0>0$, the set of commensurability classes of arithmetic hyperbolic 2- or 3-orbifolds with fixed invariant trace field $k$ and systole bounded below by $x_0$ has density one within the set of all commensurability classes of arithmetic hyperbolic 2- or 3-orbifolds with invariant trace field $k$. The proof relies upon bounds for the absolute logarithmic Weil height of algebraic integers due to Silverman, Brindza and Hajdu, as well as precise estimates for the number of rational quaternion algebras not admitting embeddings of any quadratic field having small discriminant. When the trace field is $\mathbf{Q}$, using work of Granville and Soundararajan, we establish a stronger result that allows our constant lower bound $x_0$ to grow with the area. As an application, we establish a systolic bound for arithmetic hyperbolic surfaces that is related to prior work of Buser-Sarnak and Katz-Schaps-Vishne. Finally, we establish an analogous density result for commensurability classes of arithmetic hyperbolic 3-orbifolds with small area totally geodesic $2$-orbifolds.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube