Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Survival Trees for Interval-Censored Survival data (1702.07763v2)

Published 24 Feb 2017 in stat.ME

Abstract: Interval-censored data, in which the event time is only known to lie in some time interval, arise commonly in practice; for example, in a medical study in which patients visit clinics or hospitals at pre-scheduled times, and the events of interest occur between visits. Such data are appropriately analyzed using methods that account for this uncertainty in event time measurement. In this paper we propose a survival tree method for interval-censored data based on the conditional inference framework. Using Monte Carlo simulations we find that the tree is effective in uncovering underlying tree structure, performs similarly to an interval-censored Cox proportional hazards model fit when the true relationship is linear, and performs at least as well as (and in the presence of right-censoring outperforms) the Cox model when the true relationship is not linear. Further, the interval-censored tree outperforms survival trees based on imputing the event time as an endpoint or the midpoint of the censoring interval. We illustrate the application of the method on tooth emergence data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.