Papers
Topics
Authors
Recent
Search
2000 character limit reached

A convex analysis approach to multi-material topology optimization

Published 24 Feb 2017 in math.OC | (1702.07525v1)

Abstract: This work is concerned with optimal control of partial differential equations where the control enters the state equation as a coefficient and should take on values only from a given discrete set of values corresponding to available materials. A "multi-bang" framework based on convex analysis is proposed where the desired piecewise constant structure is incorporated using a convex penalty term. Together with a suitable tracking term, this allows formulating the problem of optimizing the topology of the distribution of material parameters as minimizing a convex functional subject to a (nonlinear) equality constraint. The applicability of this approach is validated for two model problems where the control enters as a potential and a diffusion coefficient, respectively. This is illustrated in both cases by numerical results based on a semi-smooth Newton method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.