Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Symmetric structure for the endomorphism algebra of projective-injective module in parabolic category (1702.05834v4)

Published 20 Feb 2017 in math.RT

Abstract: We show that for any singular dominant integral weight $\lambda$ of a complex semisimple Lie algebra $\mathfrak{g}$, the endomorphism algebra $B$ of any projective-injective module of the parabolic BGG category $\mathcal{O}\lambda{\mathfrak{p}}$ is a symmetric algebra (as conjectured by Khovanov) extending the results of Mazorchuk and Stroppel for the regular dominant integral weight. Moreover, the endomorphism algebra $B$ is equipped with a homogeneous (non-degenerate) symmetrizing form. In the appendix, there is a short proof due to K. Coulembier and V. Mazorchuk showing that the endomorphism algebra $B\lambda{\mathfrak{p}}$ of the basic projective-injective module of $\mathcal{O}_\lambda{\mathfrak{p}}$ is a symmetric algebra.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube