2000 character limit reached
Improved lower bounds for the Mahler measure of the Fekete polynomials
Published 20 Feb 2017 in math.CV | (1702.05827v1)
Abstract: We show that there is an absolute constant $c > 1/2$ such that the Mahler measure of the Fekete polynomials $f_p$ of the form $$f_p(z) := \sum_{k=1}{p-1}{\left( \frac kp \right)zk}\,,$$ (where the coefficients are the usual Legendre symbols) is at least $c\sqrt{p}$ for all sufficiently large primes $p$. This improves the lower bound $\left(\frac 12 - \varepsilon\right)\sqrt{p}$ known before for the Mahler measure of the Fekete polynomials $f_p$ for all sufficiently large primes $p \geq c_{\varepsilon}$. Our approach is based on the study of the zeros of the Fekete polynomials on the unit circle.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.