Papers
Topics
Authors
Recent
Search
2000 character limit reached

Intuitionistic Layered Graph Logic: Semantics and Proof Theory

Published 19 Feb 2017 in cs.LO | (1702.05795v4)

Abstract: Models of complex systems are widely used in the physical and social sciences, and the concept of layering, typically building upon graph-theoretic structure, is a common feature. We describe an intuitionistic substructural logic called ILGL that gives an account of layering. The logic is a bunched system, combining the usual intuitionistic connectives, together with a non-commutative, non-associative conjunction (used to capture layering) and its associated implications. We give soundness and completeness theorems for a labelled tableaux system with respect to a Kripke semantics on graphs. We then give an equivalent relational semantics, itself proven equivalent to an algebraic semantics via a representation theorem. We utilise this result in two ways. First, we prove decidability of the logic by showing the finite embeddability property holds for the algebraic semantics. Second, we prove a Stone-type duality theorem for the logic. By introducing the notions of ILGL hyperdoctrine and indexed layered frame we are able to extend this result to a predicate version of the logic and prove soundness and completeness theorems for an extension of the layered graph semantics . We indicate the utility of predicate ILGL with a resource-labelled bigraph model.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.