Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RIPML: A Restricted Isometry Property based Approach to Multilabel Learning (1702.05181v1)

Published 16 Feb 2017 in cs.IR, cs.LG, and stat.ML

Abstract: The multilabel learning problem with large number of labels, features, and data-points has generated a tremendous interest recently. A recurring theme of these problems is that only a few labels are active in any given datapoint as compared to the total number of labels. However, only a small number of existing work take direct advantage of this inherent extreme sparsity in the label space. By the virtue of Restricted Isometry Property (RIP), satisfied by many random ensembles, we propose a novel procedure for multilabel learning known as RIPML. During the training phase, in RIPML, labels are projected onto a random low-dimensional subspace followed by solving a least-square problem in this subspace. Inference is done by a k-nearest neighbor (kNN) based approach. We demonstrate the effectiveness of RIPML by conducting extensive simulations and comparing results with the state-of-the-art linear dimensionality reduction based approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.