Papers
Topics
Authors
Recent
2000 character limit reached

Spectral methods for Langevin dynamics and associated error estimates (1702.04718v2)

Published 15 Feb 2017 in math.NA, math-ph, and math.MP

Abstract: We prove the consistency of Galerkin methods to solve Poisson equations where the differential operator under consideration is the generator of the Langevin dynamics. We show in particular how the hypocoercive nature of this operator can be used at the discrete level to first prove the invertibility of the rigidity matrix, and next provide error bounds on the approximation of the solution of the Poisson equation. We present general convergence results in an abstract setting, as well as explicit convergence rates for a simple one-dimensional example discretized using a tensor basis. Our theoretical findings are illustrated by numerical simulations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.