Papers
Topics
Authors
Recent
Search
2000 character limit reached

Transversality for local Morse homology with symmetries and applications

Published 15 Feb 2017 in math.SG, math.DS, and math.GT | (1702.04609v3)

Abstract: We prove the transversality result necessary for defining local Morse chain complexes with finite cyclic group symmetry. Our arguments use special regularized distance functions constructed using classical covering lemmas, and an inductive perturbation process indexed by the strata of the isotropy set. A global existence theorem for symmetric Morse-Smale pairs is also proved. Regarding applications, we focus on Hamiltonian dynamics and rigorously establish a local contact homology package based on discrete action functionals. We prove a persistence theorem, analogous to the classical shifting lemma for geodesics, asserting that the iteration map is an isomorphism for good and admissible iterations. We also consider a Chas-Sullivan product on non-invariant local Morse homology, which plays the role of pair-of-pants product, and study its relationship to symplectically degenerate maxima. Finally, we explore how our invariants can be used to study bifurcation of critical points (and periodic points) under additional symmetries.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.