Recovery guarantees for compressed sensing with unknown errors (1702.04424v2)
Abstract: From a numerical analysis perspective, assessing the robustness of l1-minimization is a fundamental issue in compressed sensing and sparse regularization. Yet, the recovery guarantees available in the literature usually depend on a priori estimates of the noise, which can be very hard to obtain in practice, especially when the noise term also includes unknown discrepancies between the finite model and data. In this work, we study the performance of l1-minimization when these estimates are not available, providing robust recovery guarantees for quadratically constrained basis pursuit and random sampling in bounded orthonormal systems. Several applications of this work are approximation of high-dimensional functions, infinite-dimensional sparse regularization for inverse problems, and fast algorithms for non-Cartesian Magnetic Resonance Imaging.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.