Papers
Topics
Authors
Recent
2000 character limit reached

The Standard Model Algebra - Leptons, Quarks, and Gauge from the Complex Clifford Algebra Cl6

Published 14 Feb 2017 in hep-th, math-ph, math.MP, and math.RT | (1702.04336v3)

Abstract: A simple geometric algebra is shown to contain automatically the leptons and quarks of a family of the Standard Model, and the electroweak and color gauge symmetries, without predicting extra particles and symmetries. The algebra is already naturally present in the Standard Model, in two instances of the Clifford algebra $\mathbb{C}\ell_6$, one being algebraically generated by the Dirac algebra and the weak symmetry generators, and the other by a complex three-dimensional representation of the color symmetry, which generates a Witt decomposition which leads to the decomposition of the algebra into ideals representing leptons and quarks. The two instances being isomorphic, the minimal approach is to identify them, resulting in the model proposed here. The Dirac and Lorentz algebras appear naturally as subalgebras acting on the ideals representing leptons and quarks. The resulting representations on the ideals are invariant to the electromagnetic and color symmetries, which are generated by the bivectors of the algebra. The electroweak symmetry is also present, and it is already broken by the geometry of the algebra. The model predicts a bare Weinberg angle $\theta_W$ given by $\sin2\theta_W=0.25$. The model shares common ideas with previously known models, particularly with Chisholm and Farwell, 1996, Trayling and Baylis, 2004, and Furey, 2016.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.