Papers
Topics
Authors
Recent
Search
2000 character limit reached

Graph Neural Networks and Boolean Satisfiability

Published 12 Feb 2017 in cs.AI | (1702.03592v1)

Abstract: In this paper we explore whether or not deep neural architectures can learn to classify Boolean satisfiability (SAT). We devote considerable time to discussing the theoretical properties of SAT. Then, we define a graph representation for Boolean formulas in conjunctive normal form, and train neural classifiers over general graph structures called Graph Neural Networks, or GNNs, to recognize features of satisfiability. To the best of our knowledge this has never been tried before. Our preliminary findings are potentially profound. In a weakly-supervised setting, that is, without problem specific feature engineering, Graph Neural Networks can learn features of satisfiability.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.